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The nonlinear diffusion-dispersion flux of the total mole concentrations in nonideal electrolyte solu-
tion is represented by a Korteweg—de Vries (KdV) type of equation in equilibrium. With small perturba-
tions of the KdV equation’s coefficients, we can obtain its nonequilibrium steady-state flux. One finding
is that the nonequilibrium flux is separated into the nonlinear wave propagation and the diffusion pro-
cess for entropy production. By means of the perturbation procedure, we further studied the individual
chemical component fluxes. The major finding is that in the stationary state, the macroscaled space
fluxes between individual components still remain in the no-total-flux system. From this finding, it fol-
lows that there is a hierarchy in the thermodynamical flux. Then we obtain Onsager’s relations in the
nonlinear form and the entropy production for each hierarchy of the flux.

PACS number(s): 05.70.Ln

I. INTRODUCTION

Othmer has established the excess-free-energy theory
in nonideal electrolyte solutions in closed systems [1].
Similarly, Caram and Scriven reported on the nonunique
reaction equilibria in nonideal systems [2]. Thereafter,
Li, Nicolis, and Frisch [3], and Li and Nicolis [4], extend-
ed the nonideal solution theory in the passage from equi-
librium to nonequilibrium steady state. At present, the
studies of not only nonideal chemical reactions in equilib-
rium but also nonideal chemical instability in nonequili-
brium have been made possible on the basis of these
theories. Furthermore, Horii derived the nonlinear
diffusion flux from the excess free energy [1] via the
chemical potential, and then, the nonlinear diffusion
theory was introduced into chemical instabilities in
nonideal systems [5]. As a consequence, the chemical in-
stability due to the effects of its nonlinearity is almost
that of the classic theories which have been established
by Prigogine and Nicolis [6] and by Prigogine and Lefev-
er [7] in ideal systems [8]. However, an important finding
concerning the nonlinear diffusion-dispersion flux offered
us the motivation to reconsider various relations in none-
quilibrium thermodynamics from a different point of
view. This study is started with the basic finding that the
total mole concentration flux is represented by a
Korteweg—de Vries (KdV) equation [9] in the absolutely
equilibrium conditions. On the basis of this representa-
tion, the nonequilibrium steady-state flux is explored.
This study may lead to the construction of theoretical
connections between nonequilibrium thermodynamical
relations and chemical instabilities [10,11].

Thus, the motivation of this study derives from the
representation of the equilibrium thermodynamical flux.
We consider that the nonlinear diffusion flux, which
differs from Fick’s law, is a good subject for construction
of theories in nonlinear regions of nonequilibrium ther-
modynamics, which have been handled only in limited re-
views [8,11]. This flux, first, poses the thermodynamical-
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ly essential problem concerning the tight coupling of the
diffusion to the nonlinear wave (soliton) propagation.
The former is the irreversible process along with the en-
tropy production, and the latter is the reversible one
along with no entropy production. Secondly, therefore,
the Lagrangian form of this flux in a velocity field intro-
duced from a thermodynamical version becomes
significant. Thirdly, from a more fundamental point of
view, we consider that the study of this flux becomes
closely connected with concrete understanding of the
Onsager’s relations between the flux and the force [12] in
the nonlinear form. Fourth, the last problem of this flux
is concerned with the fluctuations in nonlinear regions of
nonequilibrium thermodynamics where Einstein’s formu-
la [13] is not satisfied. For the stochastic representation
of this flux, the master equation will differ greatly from
the classic formulation in an ideal system, which has been
established by Lemarchand and Nicolis [14] and by
Nicolis and Maleck Mansour [15]. However, only from a
macroscopic point of view do we explore this flux. As the
consequence, we found that the nonlinear diffusion pri-
marily possesses the essential thermodynamical property
for instability. This paper is organized as follows. In
Sec. II, the total molar concentration flux in equilibrium
is represented by a KdV equation. Section III reports
that this total flux, which is perturbed slightly from equi-
librium, can be separated into the diffusion and the soli-
ton (nonlinear) wave propagation. In Sec. IV, we further-
more explore the individual component fluxes by the per-
turbation procedures. Section V discusses the entropy
production and the excess entropy production for this
flux in relation to its hierarchy.

II. NONLINEAR DIFFUSION FLUX
IN EQUILIBRIUM

The excess free energy in nonideal solution is given by

(1]
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2.1

i<
where o;; is a parameter characterizing the nonideal in-
terchange energy between components i and j, and n; is
the mole number of component k. It follows from (2.1)
that the composition-dependent activity coefficients
v« (n) are obtained by [1,3]

kgTIny(n)= zwij(siji+8ika —Xin) ’
Lj

i<j

(2.2)

where X, denotes the mole fraction of component k
(Xy=ny /n), and kg, T, and & represent, respectively,
the Boltzmann constant, temperature (K), and the

Kronecker delta. From (2.1) and (2.2), we explore the.

phenomenological relationship between the diffusion flux,
denoted by J X, for component i, and the diffusion force,

V(u;/T) (u; denotes the chemical potential), under an
isothermal and isobaric condition [16],

v

T , (2.3)

T,P

in=_

where Lij is Onsager’s coefficient, so that we obtain [5]

ZDU VX, +DMX; VX, , 2.4)
where
Dy(X,)=&,X; , (2.5)
DXX,)=3¢&;X,—£;8; (2.6)
J
and
_ L; au;
8= 3X;
Ly 9’G, 3%G, 0 o
T 3X,0X, |3X,0X, '

for thermodynamical stability in equilibrium. Thus, in a
nonideal system with excess free energy, the diffusion flux
is represented by the two kinds of nonlinear diffusion
terms [5].

For exploring the diffusion-dispersion relation in a
nonideal system [5], introducing the dispersion term
V*X;, Eq. (2.4)is now cast into

Iy =3D;(X;)VX;+D*X;)VX; —AVVX, . (2.8)
J

In the absolutely equilibrium conditions for Onsager’s re-

ciprocity [12], we now give the values to the coefficients

in (2.5) and (2.6); £;;= —£&° and £;;=D;=D? for all i and

J» and also A; Ao in (2.8). Then, it follows from insert-

ing the modiﬁed relations of (2.5) and (2.6) into (2.8) that

Iy, =—E3(X,VX;+X;VX;)—D°VX, — A'V?VX; .
J
2.9)

Now, introducing another notation of 3, X, =U, the to-

tal flux of J X, reads

J=3Jy =—EUVU—DVU—AV?VU . (2.10)
For exploring the stationary flux, we take the transform
of |r|—ct=p. It follows from inserting (2.10) into the
continuum equation, 3, U +divI =0, that the flux reads

cU+(E°U+D%)R,U+A%U=0, (2.11)

where J=0 in equilibrium.

In the case of £°=0, Eq. (2.11) represents the linear
form of J in an ideal system. Obviously, in an ideal sys-
tem the spatial distribution of the total mole concentra-
tion U is homogeneous. Alternatively, if D%=¢?, then
(2.11) is the stationary form of the KdV equation [9]. In
equilibrium where no gradient of U exists (3,U=0), the
spatial distribution of the total concentrations is also
homogeneous in the nonideal system. However, (2.11) in-
dicates that any small deviation from equilibrium gives
rise to the inhomogeneous spatial distribution in the per-
turbed system.

III. NONLINEAR DIFFUSION-DISPERSION
FLUX IN NONEQUILIBRIUM

In this section we explore the nonlinear diffusion-
dispersion flux in nonequilibrium. Onsager’s conditions
for nonequilibrium, §;;7§;; [12], admit variations of the
nonlinear diffusion coefficients £. The primary purpose is
to understand the distinctions between equilibrium flux
and nonequilibrium steady-state flux. For this purpose
we explore the total concentration flux in the perturbed
system under the condition of small deviations from equi-
librium values, §O, D°, and A°. Since the individual com-
ponent fluxes are perturbed slightly from equilibrium, the
total flux is represented by small deviation of U in (2.10).
The flux reads

J=—(E248ENU+SU)V(U°+8U)
—(D°+8D)V(U°+8U)—(A°+8A)VV(U°+8U) ,

(3.1)
where 6&, 6D, and 8A are, respectively, the average of de-

viations 8¢;;, 8D,, and 8A; in the individual component

fluxes, and U is the equ111br1um value. Jin (3.1) is divid-
ed into Jj, which is the same as (2.10), and its deviation
part,

8= —(E°+8&NU+8U)VSU —(D°+8D)VSU
—(A%+8A)V2VSU . (3.2)

Our concern is thus the deviation flux 8J in the nonequili-
brium steady state. First of all, we explore the total flux
of U in nonequilibrium by the following procedure:

3,(3,U+divy)=0 (3.3)

V(3,U+div))e=0, (3.4)
where

J=—EUVU —DVU—AVVU (3.5)

with the eigenvector e. It follows from inserting (3.5)
into the linear combination of (3.3) and (3.4) that
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V- a,Ue+%(J+§UVU+‘DVU+AV2VU>

+32U+V3J-e=0, (3.6

where 0t is replaced by 1/7 ( the inverse of the mean free
passage time and ¢ >>7). Inserting (3.5) into (3.6), again,
it is now cast by

—i—v-[ra, Ue'+§UVU+AVZVU]+%[ —3,U+DV2U]
+3*U—VHEUVU+DVU+AV?VU)-e=0. (3.7

Equation (3.7) represents the three kinds of dynamics for
U. First, if we set 77 ![ ]=0 in the first term, then with
the transform of V to ape, we obtain the Korteweg—de
Vries equation of a soliton. The second term, setting
[ 1=0, represents obviously the linear diffusion. The oth-
ers represent a phenomenon like nonlinear wave propaga-
tion. The first and second square brackets for 9,U and
the remaining parts for 32U indicate that the changes in
the total molar concentrations U are the soliton propaga-
tion, the diffusion obeying Fick’s law, and the nonlinear
wave propagation. If £=0 and A=0, then (3.7)
represents simply the diffusion in an ideal system.
Secondly, for the further exploration of the nonlinear
diffusion-dispersion flux of U, we introduce the velocity
field ¢ in nonequilibrium. In this case, by means of the
Lagrangian differential, the continuum equation reads
DU _(c-v)u+divi®=0, (3.8)
Dt
where c is the velocity of the center of the total mass. In
(3.8), the term (c-V)U is the reversible process. It follows
from inserting (3.5) into (3.8) that the Lagrangian
differential form of U is

DU _
Dt

By the transforms of V to a,,-e and ¢ to ce’
(e-e’=e’-e=1), Eq. (3.9) is cast by

(c-VIU+[EV-(UVU)+DV*U+AV*U]. (3.9

J )y =[cU+EU3,U+A3U]+D3,U , (3.10)
where J |, denotes the Lagrangian differential form of the
flux in the transformed coordinate p. The nonlinear part
in square brackets in (3.10) is the KdV equation, and then
divJ? in (3.8) represents the diffusion and the soliton
propagation. Thus, we conclude that the nonlinear
diffusion-dispersion flux of U in nonequilibrium is sorted
into the reversible process due to the soliton propagation
and the irreversible process due to the diffusion.

Thirdly, for understanding the nonlinear diffusion-
dispersion flux in a nonequilibrium steady state, we ex-
plore the small deviations from the equilibrium flux (2.10)
by the perturbation procedure. The coefficients of the in-
dividual component fluxes are given by the sets of {£;;],
{D;}, and {A;} which are deviated slightly from the equi-
librium values £°, D°, and A° in (2.10). Only small varia-
tions of these coefficients are admitted for the individual
component fluxes in nonequilibrium. Under these condi-

tions, the perturbation to the total flux is also limited to
the small deviations from the equilibrium values, £°, D°,
and A®. We now define a small parameter € by the
characteristic correlation length / and the characteristic
length scale [17]. In the mean concentration field, € is
defined by e=1/L <<1.

For the precise representation of (3.1), the deviations of
&, D, and A are expanded by the e-power series, so that
the total concentration U is also expanded by the e-power
series. Then, the nonequilibrium steady-state flux read

J=—(E24 86U+ e8U)V(U+€8U)
—(D%°+€8D)V(U+€8U)

—(A%+e8A)V(U+e8U) . (3.11)

To O(€°), we find J,=0 in the stationary state, where the
flux J, is the same as (2.10) in equilibrium. To O(e!), we
find the deviation flux

J,=—28%UVSU —A°V3S8U —DOVSU —2£°U'VSU
(3.12)

where V-J;=0 in stationary state and then, vU°=0
(U'=U—8U). The deviations 8U are not Gaussian
white noise obeying the Einstein formula [13] because of
the nonlinearity, so that not necessarily {(8U )7#0. In
conclusion, the small deviation flux still exists in the
nonequilibrium stationary state.

IV. INDIVIDUAL COMPONENT FLUXES
IN NONEQUILIBRIUM STATIONARY STATE

In the preceding section we explored the total mole
concentration flux under the condition of small devia-
tions from equilibrium. In short, we studied the none-
quilibrium steady-state flux in the small perturbation sys-
tem from equilibrium. In this section we, furthermore,
explore the mole fraction flux of the individual com-
ponents in the system as in (3.11). While the total mole
concentration U is spatially homogeneous, there is a pos-
sibility that the individual mole fractions are still inho-
mogeneous in the no-total-flux system. From a thermo-
dynamical point of view [17], we consider that the spatial
inhomogeneities give rise to flowing fluxes in the none-
quilibrium stationary state. The fluxes are generated ow-
ing to the interactions between the individual com-
ponents as is, in fact, suggested by (3.12). The spatial dis-
order of the chemical component distributions and their
corresponding excess-free-energy distribution can alter
§ij to be space-dependent coefficients.

We explore the linear and nonlinear diffusion flux J; in
(2.4), where the coefficients §;; and D, are now space
dependent. For the perturbation scheme, we introduce
8x; (deviation from equilibrium X;), € (the smallness pa-
rameter e=1/L [17]), t =€*T, and r=€R (the transforms
to the macroscaled variables T and R) by [18]

X, =X, +edx/V+e*x? 4.1)
V, >V, +eVg
3, €%, . (4.2)
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The linear and nonlinear diffusion coefficients are
D;=DQ+e€dD; , (4.3)
gijzg(i)j +58§ij . “.4)

To O(€°), obviously J®=0. To O(e'), we find
=~ 3£ X, Vo X, — DOViX,

J

—>EX,V.8x;—DPV 8xV . 4.5)
J
It follows from div,J'’=0 that

v2sxV=0 . (4.6)

To 0(62 )) we find
ng): _Eﬁé—ijfivk)?j—SD,-VRfi
)

—3EX,V.8x¥—DPV dx{* . 4.7)
j
It follows from
drX; +divgJ V) +div P =0 (4.8)
that

J

—DJVEX, — p V.86, X)) VgX;
J

—(V8D;)-VgX,— f¥=0, (4.9
where the fluctuations in the second order f;* are

fR=3E) X, Viox P+ DV2dx/? . (4.10)
J

It follows from 3,X; =0 in the stationary state that (4.9)
is cast in the simple representation

divgd{V +J P+ =0,
where the scalar flux J, ,-*(2) is the convection,
JHP=—3(V.8,X,)-VgX,—V 8D, VpX, .
)

(4.11)

Equation (4.11) represents the flux, which is divided into
divgJ{" and f{* in the irreversible process and J** in
the reversible process in the macroscaled coordinates
(R, T). It follows from (4.11) that only the slow scaled
fluxes of individual components exist in the nonequilibri-
um stationary state.

We consider that this study is significant for approach-
ing chemical instabilities far from equilibrium. In other
words, our present purpose is to explore the relationships
between each hierarchical flux in nonequilibrium and
chemical instability. First of all, if A;5<0, then the soli-
ton propagation occurs in the flux J'©', because the chem-
ical concentrations are constantly supplied by reactions
far from equilibrium. On the other hand, chemical oscil-
lations evolve from the fluctuations’ enhancement near
the critical point. We need to clarify the relationships be-
tween the fluctuations’ enhancement and the soliton
propagation, in particular, in the case of chemical oscilla-
tions represented by the Kuramoto-Sivashinsky equation

[19,20]. Secondly, with respect to the fluxes I and 32,
the situations of (3.11) change along with chemical reac-
tions, so that the fluxes may damp. During a long range
of period of time 7, the concentrations’ change in chemi-
cal X; can be represented by nearly zero or —«X;.

To O(€e?), we find

34X, +divgJ¥=0, (4.12)

so that the nonlinear wave part is

€37 X, — 3 [(8£;, X, +8D,;)03 X;]1=0 . (4.13)
J

Equation (4.13) represents the small wave propagation

and, in short, the standing wave because of € << 1. If the

wave is thermodynamically stable, then the concentration

valley and the free-energy potential wells are very

significant in biological systems.

V. ONSAGER’S RELATION FOR THE NONLINEAR
DIFFUSION AND ITS ENTROPY PRODUCTION

Transport phenomena such as diffusion have been
treated satisfactorily by linear thermodynamics, where
the conjugate force is a gradient of the chemical poten-
tial. Then, the problems that require an extension of the
linear thermodynamical theory to the nonlinear range
have been concerned with, for example, a realistic
description of chemical reactions. However, from the re-
sults in Secs. III and IV, we are confronted with the
problem that the nonlinear diffusion, in the coupling be-
tween dissipative and convection processes, cannot be de-
scribed by the methods of linear thermodynamical theory
[11]. From (2.3) it follows that the force conjugate to the
nonlinear diffusion is derived from the excess free energy,
which participates in interactions in nonideal electrolyte
solution. Therefore, we identify the force with a gradient
of its chemical potential.

Near equilibrium, the entropy production due to the
variation of this force, denoted by d,P,, is computed by

(11]
dP,= [dVZV-J,d,(u;/T)

= iT [avsvid, [zw,.jxixj ]
i j

:_indVEth,.d,(w,.jX,.Xj)
2
__1 2
__?de%mij[Xithid,Xj+Xj(dtxi) 1<o0,
(5.1)

where the entropy production due to chemical reactions
is ignored.
Equation (5.1) is now cast by
1
dPy=—— degwiniaxisxj <o
ij

=0 (in the steady state) . (5.2)
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The inequality (5.2), while it is in the nonlinear form, is as
general as local thermodynamics [8]. Thus, beyond the
nonlinearity, we can conclude that d, P, satisfies a general
inequality extending the theorem of minimum entropy
production [10]. Then, the thermodynamical stability for
the nonlinear diffusion is given in the nonlinear form:

>0 X;8X;6X; =0 . (5.3)

ij
The evolution criterion by the excess entropy production
in linear range indicates that the stability in nonequilibri-
um is represented by the excess entropy balance equation.
We notice that in the entire linear range where the local
formulation of thermodynamics remains valid, the quad-
ratic form 82S has the same structure as in equilibrium
[8]. Then, from the result of (5.2) obtained by an exten-
sion of the linear theory it follows that in the nonlinear
range the excess entropy is

85 =—— [ dVS0,X5X5X, . (5.4)
ij

The time derivative of 825 with respect to the nonlinear
diffusion is computed, by neglecting chemical reactions
term,

d,18')=—= [av [Z87 Vo X0X, |
L]
1
=7 Jav [_Ei'ﬁji 8(VE,; X, X) ]

=f dv3,sJ;-8x;

:Sxpldiﬂ . (5-5)

It follows from (5.5) that the nonequilibrium steady state
becomes unstable as soon as the excess entropy produc-
tion 8, P becomes negative [10].

From the results in Sec. IV, the conjugate forces to J'*)
and J'V are defined as

XP=X,V.X; for k=0,

i
X\ =X;VgX; for k=1,

(5.6)

where k symbolizes a hierarchy. The relations in (5.6)
represent the thermodynamical hierarchy where the gen-
eralized forces are defined in space r and in space R. The
flux J© and the force x'* satisfy (5.2), so that the
theorem of minimum entropy production holds apparent-
ly for k =0. Alternatively, because of J'"50 in the sta-
tionary state, the theorem is no longer valid for k =1,
and then, (5.5) is applied to the flux and the force for
k =1 by the linearization.

This thermodynamical conclusion in our paper sug-
gests that since it becomes 6, P <0 (unstable) for kK =1 far
from equilibrium, the flux J) in the macroscaled space R
can play an important role for the system to undergo an
instability. Thus, it follows that the nonlinear diffusion
possesses primarily a thermodynamical property as a
transport phenomenon for instability. In nonideal elec-
trolyte solution, the excess free energy generates the non-
linear diffusion, and furthermore, the spatial disorder of
chemicals concentration (and its corresponding excess
free-energy inhomogeneity) gives rise to the hierarchy in
the thermodynamical flux in nonequilibrium. Through
this study we clarified that the methods of an extension of
linear thermodynamics to nonlinear range is valid for the
nonlinear transport phenomenon.

ACKNOWLEDGMENTS

The author is grateful to Professor G. Nicolis and Pro-
fessor R. Lefever for their kind hospitality at the Univer-
site Libre de Bruxelles.

*Permanent address.

[1] H. G. Othmer, Chem. Eng. Sci. 31, 993 (1976).

[2] H. S. Caram and L. E. Scriven, Chem. Eng. 31, 163 (1976).

[3]R. S. Li, G. Nicolis, and H. L. Frish, J. Phys. Chem. 85,
1907 (1981).

[4] R. S. Li and G. Nicolis, J. Phys. Chem. 85, 1912 (1981).

[5] Z. Horii (unpublished).

[6] I. Prigogine and G. Nicolis, J. Chem. Phys. 46, 3542
(1967).

[7]11. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695
(1968).

[8] G. Nicolis and I. Prigogine, Self-Organization in Non-

equilibrium Systems (Wiley, New York, 1977).
[9] A. C. Newell, Soliton in Mathematics and Physics (SIAM,
Philadelphia, 1985).
[10] P. Glansdorff and I. Prigogine, Thermodynamical Theory
of Structure, Stability and Fluctuations (Wiley, New York,

1971).

[11] G. Nicolis, Adv. Chem. Phys. 19, 209 (1971).

[12] L. Onsager, Phys. Rev. 37, 405 (1931); L. Onsager and S.
Marchup, ibid. 91, 1505 (1953).

[13] A. Einstein, Ann. Phys. (Leipzig) 33, 1275 (1910).

[14] H. Lemarchand and G. Nicolis, Physica 824, 521 (1976).

[15] G. Nicolis and M. Maleck Mansour, Phys. Rev. A 29,
2845 (1984).

[16] I. Prigogine and R. Defay, Thermodynamique Chimique
(Desoer, Liege, 1944); translated into Japanese by M.
Senoo (Misuzu, Tokyo, 1966).

[17] G. Nicolis and V. Altares, J. Phys. Chem. 93, 2681 (1989).

[18] G. Nicolis (unpublished).

[19] Y. Kuramoto, Chemical Oscillations, Waves and Tur-
bulence (Springer, Berlin, 1984).

[20] G. 1. Sivashinsky, Acta Astron. 4, 1177 (1977); 6, 569
(1979).



